AskDefine | Define meteor

Dictionary Definition



1 a streak of light in the sky at night that results when a meteoroid hits the earth's atmosphere and air friction causes the meteoroid to melt or vaporize or explode [syn: shooting star]
2 (astronomy) any of the small solid extraterrestrial bodies that hits the earth's atmosphere [syn: meteoroid]

User Contributed Dictionary

see Meteor



Of origin, derived from the meteorum, from the μετέωρον, itself of the μετέωρος, from μετά + αείρω.


  1. A fast moving streak of light in the night sky caused by the entry of extraterrestrial matter into the earth's atmosphere.
  2. A juggling prop similar to poi balls, in that it is twirled at the end of a cord or cable.
  3. A striking weapon resembling a Track and Field hammer consisting of a weight swung at the end of a cable or chain.


  • Herman Melville, “The Portent (1859)”
    But the streaming beard is shown
    (Weird John Brown),
    The meteor of the war.

Derived terms

Related terms


streak of light
juggling prop
striking weapon


  1. meteor, bolide



  1. meteor, bolide

Extensive Definition

A meteoroid is a small sand to boulder-sized particle of debris in the Solar system. The visible path of a meteoroid that enters Earth's (or another body's) atmosphere is a meteor, commonly called a "shooting star" or "falling star". Many meteors are part of a meteor shower. The root word meteor comes from the Greek meteōros, meaning high in the air.


Larger than a meteoroid, the object is an asteroid; smaller than that, it is interplanetary dust. The current official definition of a meteoroid from the International Astronomical Union is "A solid object moving in interplanetary space, of a size considerably smaller than an asteroid and considerably larger than an atom." The Royal Astronomical Society has proposed a new definition where a meteoroid is between 100 µm and 10 m across. The NEO definition includes larger objects, up to 50 m in diameter, to this category.


A meteor is the visible event that occurs when a meteoroid or asteroid enters Earth's atmosphere and becomes brightly visible. For bodies with a size scale larger than the atmospheric mean free path (10 cm to several metres) the visibility is due to the heat produced by the ram pressure (not friction, as is commonly assumed) of atmospheric entry. Since the majority of meteors are from small sand-grain size meteoroid bodies, most visible signatures are caused by electron relaxation following the individual collisions between vaporized meteor atoms and atmospheric constituents. The meteor is simply the visible event rather than an object itself.


A fireball is brighter than a usual meteor. The International Astronomical Union defines a fireball as "a meteor brighter than any of the planets" (magnitude -4 or greater). The International Meteor Organization (an amateur organization that studies meteors) has a more rigid definition. It defines a fireball as a meteor that would have a magnitude of -3 or brighter if seen at zenith. This definition corrects for the greater distance between an observer and a meteor near the horizon. For example, a meteor of magnitude -1 at 5 degrees above the horizon would be classified as a fireball because if the observer had been directly below the meteor it would have appeared as magnitude -6.


The word bolide comes from the Greek βολις, (bolis) which can mean a missile or to flash. The IAU has no official definition of bolide and generally considers the term synonymous with fireball. The term is more often used among geologists than astronomers where it means a very large impactor. For example, the USGS uses the term to mean a generic large crater forming projectile "to imply that we do not know the precise nature of the impacting body ... whether it is a rocky or metallic asteroid, or an icy comet, for example". Astronomers tend to use the term to mean an exceptionally bright fireball, particularly one that explodes (sometimes called a detonating fireball).


A meteorite is a portion of a meteoroid or asteroid that survives its passage through the atmosphere and impact with the ground without being destroyed. Meteorites are sometimes, but not always, found in association with hypervelocity impact craters; during energetic collisions, the entire impactor may be vaporized, leaving no meteorites.


Molten terrestrial material "splashed" from a crater can cool and solidify into an object known as a tektite. These are often mistaken for meteorites.

Meteoric dust

Most meteoroids are destroyed when they enter the atmosphere. The left-over debris is called meteoric dust or just meteor dust. Meteor dust particles can persist in the atmosphere for up to several months. These particles might affect climate, both by scattering electromagnetic radiation and by catalyzing chemical reactions in the upper atmosphere.

Ionization trails

During the entry of a meteoroid or asteroid into the upper atmosphere, an ionization trail is created, where the molecules in the upper atmosphere are ionized by the passage of the meteor. Such ionization trails can last up to 45 minutes at a time. Small, sand-grain sized meteoroids are entering the atmosphere constantly, essentially every few seconds in a given region, and thus ionization trails can be found in the upper atmosphere more or less continuously. When radio waves are bounced off these trails, it is called meteor burst communications.
Meteor radars can measure atmospheric density and winds by measuring the decay rate and Doppler shift of a meteor trail.


Numerous people have over the years reported sounds being heard while bright meteors flared overhead. This would seem impossible, given the relatively slow speed of sound. Any sound generated by a meteor in the upper atmosphere, such as a sonic boom, should not be heard until many seconds after the meteor disappeared. However, in certain instances, for example during the Leonid meteor shower of 2001, several people reported sounds described as "crackling", "swishing", or "hissing" occurring at the same instant as a meteor flare. Similar sounds have also been reported during intense displays of Earth's auroras.
Many investigators believe the sounds to be imaginary... essentially sound effects added by the mind to go along with a light show. However, the persistence and consistency of the reports have caused others to wonder. And sound recordings made under controlled conditions in Mongolia in 1998 by a team lead by Slaven Garaj, a physicist at the Swiss Federal Institute of Technology at Lausanne, support the contention that the sounds are real.
How these sounds could be generated, assuming they are in fact real, remains something of a mystery. It has been hypothesized that the turbulent ionized wake of a meteor interacts with the magnetic field of the Earth, generating pulses of radio waves. As the trail dissipates, megawatts of electromagnetic energy could be released, with a peak in the power spectrum at audio frequencies. Physical vibrations induced by the electromagnetic impulses would then be heard if they are powerful enough to make grasses, plants, eyeglass frames, and other conductive materials vibrate. This proposed mechanism, although proven to be plausible by laboratory work, remains unsupported by corresponding measurements in the field.


Many meteoroids are formed by impacts between asteroids though many are also left in trails behind comets that form meteor showers and many members of those trails are eventually scattered into other orbits forming random meteors too. Other sources of meteors are known to have come from impacts on the Moon, or Mars as some meteorites from them have been identified. See Lunar meteorites and Mars meteorites.


Meteoroids and asteroids orbit around the Sun, in greatly differing orbits. Some of these objects orbit together in streams; these are probably comet remnants that would form a meteor shower. Other meteoroids are not associated with any stream clustering (although there must also be meteoroids clustered in orbits which do not intercept Earth's or any other planet). The fastest objects travel at roughly 42 kilometers per second (26 miles per second) through space in the vicinity of Earth's orbit. Together with the Earth's orbital motion of 29 km/s (18 miles per second), collision speeds can reach 71 km/s (44 miles per second) during head-on collisions. This would only occur if the meteor were in a retrograde orbit. Meteors have roughly a fifty percent chance of a daylight (or near daylight) collision with the Earth as the Earth orbits in the direction of roughly west at noon. Most meteors are however, observed at night as low light conditions allow fainter meteors to be observed. Meteors are usually seen when they are 60 to 120 km (40 to 75 miles) above the ground.
A number of specific meteors have been observed, largely by members of the public and largely by accident, but with enough detail that orbits of the incoming meteors or meteorites have been calculated. All of them came from orbits from the vicinity of the Asteroid Belt.
Perhaps the best-known meteor/meteorite fall is the Peekskill Meteorite which was filmed on October 9, 1992 by at least 16 independent videographers.
Eyewitness accounts indicate that the fireball entry of the Peekskill meteorite started over West Virginia at 23:48 UT (±1 min). The fireball, which traveled in a northeasterly direction had a pronounced greenish colour, and attained an estimated peak visual magnitude of -13. During a luminous flight time that exceeded 40 seconds the fireball covered a ground path of some 700 to 800 km.
One meteorite recovered at Peekskill, N.Y., for which the event and object gained its name, (at 41.28 deg. N, 81.92 deg. W) had a mass of 12.4 kg (27 lb) and was subsequently identified as an H6 monomict breccia meteorite. The video record suggests that the Peekskill meteorite probably had several companions over a wide area especially in the harsh terrain in the vicinity of Peekskill.

Spacecraft damage

Even very small meteoroids can damage spacecraft. The Hubble Space Telescope for example, has about 572 tiny craters and chipped areas.


meteor in Arabic: نيزك
meteor in Asturian: Meteoroide
meteor in Belarusian (Tarashkevitsa): Мэтэароід
meteor in Bosnian: Meteoroidi
meteor in Bulgarian: Метеорно тяло
meteor in Catalan: Meteoroide
meteor in Czech: Meteoroid
meteor in Danish: Meteoroid
meteor in German: Meteoroid
meteor in Estonian: Meteoorkeha
meteor in Modern Greek (1453-): Μετέωρο
meteor in Spanish: Meteoroide
meteor in Persian: شهاب‌وار
meteor in French: Météoroïde
meteor in Korean: 유성체
meteor in Croatian: Meteoroid
meteor in Indonesian: Meteoroid
meteor in Italian: Meteoroide
meteor in Hebrew: מטאורואיד
meteor in Swahili (macrolanguage): Kimondo
meteor in Latvian: Meteoroīds
meteor in Luxembourgish: Meteorid
meteor in Lithuanian: Meteoroidas
meteor in Hungarian: Meteoroid
meteor in Malay (macrolanguage): Meteoroid
meteor in Dutch: Meteoroïde
meteor in Japanese: 流星物質
meteor in Norwegian: Meteoroide
meteor in Norwegian Nynorsk: Meteoroide
meteor in Polish: Meteoroid
meteor in Portuguese: Meteoróide
meteor in Russian: Метеороид
meteor in Slovak: Meteoroid
meteor in Slovenian: Meteoroid
meteor in Serbian: Метеориди
meteor in Finnish: Meteoroidi
meteor in Swedish: Meteoroid
meteor in Thai: สะเก็ดดาว
meteor in Chinese: 流星体

Synonyms, Antonyms and Related Words

aerolite, asteroids, aurora particles, blackout, bolide, chondrite, cosmic dust, cosmic particles, cosmic ray bombardment, fireball, intergalactic matter, meteor crater, meteor dust, meteor dust impacts, meteor shower, meteor swarm, meteor trail, meteor train, meteoric shower, meteorite, meteoroid, meteorolite, meteors, micrometeorite, micrometeoroid, radiant, radiant point, radiation, shooting star, siderite, siderolite, space bullets, tektite, the bends, weightlessness
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1